Direct simulations of spherical particle motion in non-Newtonian liquids

  • Author / Creator
    Prashant, .
  • The present work deals with the development of a direct simulation strategy for solving the motion of spherical particles in non-Newtonian liquids. The purely viscous (non-elastic) non-Newtonian liquids are described by Bingham and thixotropy models. Validation of the strategy is performed for single phase (lid driven cavity flow) and two phase flows(sphere sedimentation). Lid driven cavity flow results illustrate the flow evolution of thixotropic liquid and subtle differences between thixotropic rheology and pseudo Bingham rheology. Single sphere sedimentation in Bingham liquid is shown to be influenced by the yield stress of the liquid. Time-dependent properties such as aging prominently affect the settling of a sphere in thixotropic liquid. The hydrodynamic interactions between two spheres are also studied at low and moderate Reynolds numbers. In thixotropic liquid, an intriguing phenomenon is observed where the separation distance between the spheres first increases and then rapidly decreases.

  • Subjects / Keywords
  • Graduation date
    Fall 2009
  • Type of Item
  • Degree
    Master of Science
  • DOI
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.