Usage
  • 58 views
  • 87 downloads

A Cold Atoms Apparatus for a New Hybrid Quantum System

  • Author / Creator
    Sullivan, Michelle A
  • As quantum computing research progresses, the need for a quantum network to allow communication between individual processors is becoming apparent. Such a network will require the ability to process, transmit, and store quantum information. Many quantum devices have been investigated, however individ- ual devices are specialists in one task, and in order to realize a full-scale quan- tum network multiple devices will need to be combined into a hybrid quantum system (HQS). This thesis describes efforts to construct a HQS which will combine laser- cooled atoms with other cryogenically-cooled quantum devices. The envisioned system requires the construction of a new apparatus where 87Rb atoms will be laser cooled, then moved 60 cm into a dilution fridge where they will be coupled to other quantum devices. Once the apparatus is complete, we plan to conduct quantum memory, wavelength transduction, and state transfer ex- periments. This work details the design of the ultra high vacuum chamber where the atoms will be laser cooled, as well as the optical set up required for the cooling. As well, simulations of the transport process are reported, and suggestions for possible transport schemes are given.

  • Subjects / Keywords
  • Graduation date
    Fall 2020
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/r3-6vvj-kc16
  • License
    Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.