Usage
  • 2 views
  • 5 downloads

Transition Metal Oxides Anchored onto Heteroatom Doped Carbon Nanotubes as Efficient Bifunctional Catalysts for Rechargeable Zinc-Air Batteries

  • Author / Creator
    McDougall, Alexandra
  • It is well known that renewable energy, e.g., wind and solar power, are intermittent energy sources. This means that energy storage devices are needed to store the energy for when it is needed. Currently Li-ion batteries are used as these energy storage devices, not only for alternative energy plants but in vehicles and electronics. There are several drawbacks with using Li-ion batteries, such as low safety, harmful Li mining practices, and high material costs. Rechargeable zinc-air batteries (ZABs) have gained a lot of traction recently due to their low cost, high safety, low environmental impact, and high theoretical energy density. However, a major obstacle is the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air electrode, which have hindered practical applications of ZABs. Precious metal catalysts have been applied to help mitigate the slow reaction kinetics; however, these are expensive and complicate manufacturing practices since two different precious metals are needed to achieve a bifunctional catalyst. Therefore, a low-cost bifunctional catalyst is needed to improve the slow reaction kinetics at the air electrode. This work focuses on further investigating a previously developed impregnation technique for air electrode preparation using an array of transition metal (Zn, Ni, Mn, and Co) oxide combinations. Various electrochemical and microstructural characterization techniques, e.g., linear sweep voltammetry, electrochemical impedance spectroscopy, electron microscopy, and energy dispersive X-ray spectroscopy, are used to examine each sample. The first study involved fabricating several catalysts by decorating nitrogen doped carbon nanotubes (N-CNTs) with either tri-metallic (Ni-Mn-Co) or tetra-metallic (Zn-Ni-Mn-Co) oxides, through a simple impregnation method into carbon-based, gas diffusion layers (GDL). Metal oxide compositions were selected based on previous results, preliminary electrochemical testing, and statistical design of experiments (DOE). Microstructural characterization was done using electron microscopy and X-ray photoelectron spectroscopy (XPS), and determined that the oxides fabricated were spinel oxides. Samples were electrochemically tested and the best candidates were subjected to full cell testing and bifunctional cycling for 200 charge/discharge cycles at 10 mA/cm2. The overall bifunctional efficiency, after cycling, of the best NiMnCoOx/N-CNT and ZnNiMnCoOx/N-CNT catalysts was 53.3% and 56.4%, respectively; both outperformed Pt-Ru/C in both overall bifunctional efficiency (38%) and cycling stability. The maximum power density of one of the tetra-metallic oxides exceeded that of Pt-Ru/C (110 mW/cm2) at 134 mW/cm2. The addition of Zn with Ni-Mn-Co oxide particles showed improved cycling stability and overall bifunctional efficiency. The second study investigated the effect of co-doping of carbon nanotubes with nitrogen and sulfur (N,S-CNTs), combined with tri-metallic and tetra-metallic oxides, on the ORR and OER reaction kinetics at the air electrode. The best tri-metallic (Ni-Mn-Co) oxide and tetra-metallic (Zn-Ni-Mn-Co) oxide from the first study were used in this investigation. Microstructural characterization analysis revealed that the Co and Mn valences increased for the Ni-Mn-Co and Zn-Ni-Mn-Co oxides, respectively. Electrochemical testing revealed that the Ni-Mn-Co oxide was comparable to the Pt-Ru/C catalyst with a power density of ~95 mW/cm2 and Zn-Ni-Mn-Co oxide was comparable to the Pt-Ru/C catalyst with an efficiency of 56.0% at 20 mA/cm2. The addition of sulfur to the N-CNTs positively impacted the Ni-Mn-Co oxide, leading to a round trip bifunctional cycling efficiency of 55.1% for 200 charge-discharge cycles at 10 mA/cm2. The impact of sulfur did not have a positive impact on the Zn-Ni-Mn-Co oxide; the LSV results were significantly worse than the equivalent oxide on N-CNTs and the full cell testing was comparable to the N-CNT oxide. Both tri-metallic and tetra-metallic oxides outperformed Pt-Ru/C during bifunctional cycling.

  • Subjects / Keywords
  • Graduation date
    Fall 2021
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/r3-8xqq-c838
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.